Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
We study the problem of learning representations of entities and relations in knowledge graphs for predicting missing links. The success of such a task heavily relies on the ability of modeling and inferring the patterns of (or between) the relations. In this paper, we present a new approach for knowledge graph embedding called RotatE, which is able to model and infer various relation patterns including: symmetry/antisymmetry, inversion, and composition. Specifically, the RotatE model defines each relation as a rotation from the source entity to the target entity in the complex vector space. In addition, we propose a novel self-adversarial negative sampling technique for efficiently and effectively training the RotatE model. Experimental results on multiple benchmark knowledge graphs show that the proposed RotatE model is not only scalable, but also able to infer and model various relation patterns and significantly outperform existing state-of-the-art models for link prediction.
translated by 谷歌翻译
本文旨在通过阅读敌人的思想(VM)来生成现实的人重新识别Reid的攻击样本。在本文中,我们提出了一种新颖的不起眼且可控的REID攻击基线LCYE,以生成对抗性查询图像。具体而言,LCYE首先通过模仿代理任务的教师学生记忆来提炼VM的知识。然后,这种知识的事先充当明确的密码,传达了VM所相信的必不可少和现实的内容,以实现准确的对抗性误导。此外,从LCYE的多个相反任务框架中受益,我们从对抗性攻击的角度进一步研究了REID模型的解释性和概括,包括跨域适应,跨模型共识和在线学习过程。对四个REID基准测试的广泛实验表明,我们的方法的表现优于其他最先进的攻击者,而白色框,黑框和目标攻击的边距很大。我们的代码现在可在https://gitfront.io/r/user-3704489/mkxusqdt4ffr/lcye/上找到。
translated by 谷歌翻译
监督学习已被广​​泛用于攻击分类,需要高质量的数据和标签。但是,数据通常是不平衡的,很难获得足够的注释。此外,有监督的模型应遵守现实世界的部署问题,例如防御看不见的人造攻击。为了应对挑战,我们提出了一个半监督的细粒攻击分类框架,该框架由编码器和两个分支机构结构组成,并且该框架可以推广到不同的监督模型。具有残留连接的多层感知器用作提取特征并降低复杂性的编码器。提出了复发原型模块(RPM)以半监督的方式有效地训练编码器。为了减轻数据不平衡问题,我们将重量任务一致性(WTC)引入RPM的迭代过程中,通过将较大的权重分配给损失函数中较少样本的类别。此外,为了应对现实世界部署中的新攻击,我们提出了一种主动调整重新采样(AAR)方法,该方法可以更好地发现看不见的样本数据的分布并调整编码器的参数。实验结果表明,我们的模型优于最先进的半监督攻击检测方法,分类精度提高了3%,训练时间降低了90%。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are powerful tools for graph representation learning. Despite their rapid development, GNNs also face some challenges, such as over-fitting, over-smoothing, and non-robustness. Previous works indicate that these problems can be alleviated by random dropping methods, which integrate augmented data into models by randomly masking parts of the input. However, some open problems of random dropping on GNNs remain to be solved. First, it is challenging to find a universal method that are suitable for all cases considering the divergence of different datasets and models. Second, augmented data introduced to GNNs causes the incomplete coverage of parameters and unstable training process. Third, there is no theoretical analysis on the effectiveness of random dropping methods on GNNs. In this paper, we propose a novel random dropping method called DropMessage, which performs dropping operations directly on the propagated messages during the message-passing process. More importantly, we find that DropMessage provides a unified framework for most existing random dropping methods, based on which we give theoretical analysis of their effectiveness. Furthermore, we elaborate the superiority of DropMessage: it stabilizes the training process by reducing sample variance; it keeps information diversity from the perspective of information theory, enabling it become a theoretical upper bound of other methods. To evaluate our proposed method, we conduct experiments that aims for multiple tasks on five public datasets and two industrial datasets with various backbone models. The experimental results show that DropMessage has the advantages of both effectiveness and generalization, and can significantly alleviate the problems mentioned above.
translated by 谷歌翻译
深度神经网络(DNN)已经证明了他们在各种域中的表现。但是,它提出了社会问题,如果他们适用于涉及有价值的资源分配的敏感域,如教育,贷款和就业,则会引发社会问题。在DNN可靠地部署到这样的敏感域之前,执行公平性测试至关重要,即,尽可能多地生成以发现公平违规的情况。然而,现有的测试方法仍然有限于三个方面:可解释性,性能和概括性。为了克服挑战,我们提出了一个新的DNN公平测试框架,与以前的工作不同于在几个关键方面的内容:(1)可解释 - 它定量解释DNNS的公平违反偏见决定的公平违规; (2)有效 - 它使用解释结果在更少的时间内引导更多样化的情况; (3)通用 - 它可以处理结构化和非结构化数据。在7个数据集中的广泛评估和相应的DNN展示了神经元的优越性。例如,在结构化数据集上,它会产生更多的实例(〜x5.84)并节省更多时间(平均加速度为534.56%),与最先进的方法相比。此外,还可以利用神经元的情况来改善偏置DNN的公平,这有助于构建更公平和值得信赖的深度学习系统。
translated by 谷歌翻译
分布式培训已成为培训大型神经网络(NN)模型的普遍性和有效的方法,该模型加工大规模数据。然而,满足来自各种NN模型,多样化计算资源的要求以及在培训工作期间的动态变化是非常挑战的。在这项研究中,我们在系统的端到端视图中设计了我们的分布式训练框架,以提供不同场景的内置自适应能力,特别是对于工业应用和生产环境,通过完全考虑资源分配,模型分区,任务放置和分布式执行。基于统一的分布式图和统一群集对象,我们的自适应框架配备了全球成本模型和全局计划者,可以实现任意并行,资源感知的放置,多模式执行,容错和弹性分布式。训练。实验表明,我们的框架可以满足应用程序的多样性和资源的异质性满足各种要求和具有竞争力的性能。具有260亿参数的Ernie语言模型在数千个AI处理器上有效地培训,可扩展性较弱的91.7%。通过采用异质管道异步执行,从推荐系统的模型的吞吐量可以分别增加到2.1倍,仅增加了GPU和CPU培训的3.3倍。此外,容错和弹性分布式培训已成功应用于在线工业应用,这减少了长期培训工作的数量,增加了34.49%,并在全球调度效率增加了33.91%生产环境。
translated by 谷歌翻译
我们证明了基于可见光定位(VLP)定位的多移动机器人导航。从我们的实验中,VLP可以准确地定位机器人的导航位置。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译